Eitherモナドの使い道 部分的な失敗を全体的な失敗とする計算(2)

※この記事のMaybe編はこちら

idと名前のデータベースと、順位とidのデータベースからなる、下記のようなフレームワークを考えてみよう。

2位の名前を取り出すには、idFromRank で 2位のidを取り出し、その id を nameFromId に渡して名前を得るものとする。
idFromRank も nameFromId も要求された順位やidのデータがなければ Left に評価されるものとする。


type Err = String
type ID = Int
type Rank = Int
type Name = String
type RankDB = [(Rank,ID)]
type NameDB = [(ID,Name)]

idFromRank :: RankDB -> Rank -> Either Err ID
idFromRank db rk =
  case lookup rk db of
    Nothing -> Left $ "id of rank " ++ (show rk) ++ " was not found."
    Just id -> Right id

nameFromId :: NameDB -> ID -> Either Err Name
nameFromId db id =
  case lookup id db of
    Nothing   -> Left $ "name of id " ++ (show id) ++ " was not found."
    Just name -> Right name

このフレームワークを使って、上位3位の名前を取得する関数を作成してみよう。
ポイントは、idFromRank も nameFromId も Left に評価されることがあるため、この関数もEither型に評価されるものとし、1位から3位までのidがすべて存在し、それらの名前がすべて存在する場合のみRightに評価され、それ以外のときはLeftに評価されるようにすることだ。

下記のように呼び出されるようになればよいだろう。

main = do
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]

式を使ったプログラミングで素直に記述する場合、筆者の能力では下記の記述が限界である。
これはどう考えても地獄である。我々が関数プログラミングに求めていたものはこんなものではなかったはずだ。

topThree :: RankDB -> NameDB -> Either Err (Name,Name,Name)
topThree rdb ndb =
  let eitherId1 = idFromRank rdb 1
  in
   if isLeft eitherId1 then Left $ fromLeft eitherId1
   else
     let eitherName1 = nameFromId ndb $ fromRight eitherId1
     in
      if isLeft eitherName1 then Left $ fromLeft eitherName1
      else
        let eitherId2 = idFromRank rdb 2
        in
         if isLeft eitherId2 then Left $ fromLeft eitherId2
         else
           let eitherName2 = nameFromId ndb $ fromRight eitherId2
           in
            if isLeft eitherName2 then Left $ fromLeft eitherName2
            else
              let eitherId3 = idFromRank rdb 3
              in
               if isLeft eitherId3 then Left $ fromLeft eitherId3
               else
                 let eitherName3 = nameFromId ndb $ fromRight eitherId3
                 in
                  if isLeft eitherName3 then Left $ fromLeft eitherName3
                  else Right (
                    fromRight eitherName1,
                    fromRight eitherName2,
                    fromRight eitherName3
                    )
  where
    fromLeft (Left x) = x 
    fromRight (Right x) = x

Haskell には case 文があるので、効果的に使えば下記のように改善することができる。
しかし case 文の入れ子も本質的には地獄である。こんなことなら手続き型言語を使えばよいのではないか。

topThreeC :: RankDB -> NameDB -> Either Err (Name,Name,Name)
topThreeC rdb ndb =
  case idFromRank rdb 1 of
    Left e -> Left e
    Right id1 -> case nameFromId ndb id1 of
      Left e -> Left e
      Right n1 -> case idFromRank rdb 2 of
        Left e -> Left e
        Right id2 -> case nameFromId ndb id2 of
          Left e -> Left e
          Right n2 -> case idFromRank rdb 3 of
            Left e -> Left e
            Right id3 -> case nameFromId ndb id3 of
              Left e -> Left e
              Right n3 -> Right (n1,n2,n3)

そこで Eitherモナド登場。
Either型のモナドとしての性質を使うと、上記とまったく同じ意味の関数を下記の内容だけで記述することができる。
モナドとしてのEither型には、失敗するかもしれない計算どうしを組み合わせるときは、一部でも失敗したらすべてが失敗したことにする
という性質が最初から組み込まれているためである。

topThreeM :: RankDB -> NameDB -> Either Err (Name,Name,Name)
topThreeM rdb ndb = do

  id <- idFromRank rdb 1
  n1 <- nameFromId ndb id

  id <- idFromRank rdb 2
  n2 <- nameFromId ndb id
    
  id <- idFromRank rdb 3
  n3 <- nameFromId ndb id

  return (n1,n2,n3)

全部のせておく。

import Data.Either (isLeft)

type Err = String
type ID = Int
type Rank = Int
type Name = String
type RankDB = [(Rank,ID)]
type NameDB = [(ID,Name)]

idFromRank :: RankDB -> Rank -> Either Err ID
idFromRank db rk =
  case lookup rk db of
    Nothing -> Left $ "id of rank " ++ (show rk) ++ " was not found."
    Just id -> Right id

nameFromId :: NameDB -> ID -> Either Err Name
nameFromId db id =
  case lookup id db of
    Nothing   -> Left $ "name of id " ++ (show id) ++ " was not found."
    Just name -> Right name




topThree :: RankDB -> NameDB -> Either Err (Name,Name,Name)
topThree rdb ndb =
  let eitherId1 = idFromRank rdb 1
  in
   if isLeft eitherId1 then Left $ fromLeft eitherId1
   else
     let eitherName1 = nameFromId ndb $ fromRight eitherId1
     in
      if isLeft eitherName1 then Left $ fromLeft eitherName1
      else
        let eitherId2 = idFromRank rdb 2
        in
         if isLeft eitherId2 then Left $ fromLeft eitherId2
         else
           let eitherName2 = nameFromId ndb $ fromRight eitherId2
           in
            if isLeft eitherName2 then Left $ fromLeft eitherName2
            else
              let eitherId3 = idFromRank rdb 3
              in
               if isLeft eitherId3 then Left $ fromLeft eitherId3
               else
                 let eitherName3 = nameFromId ndb $ fromRight eitherId3
                 in
                  if isLeft eitherName3 then Left $ fromLeft eitherName3
                  else Right (
                    fromRight eitherName1,
                    fromRight eitherName2,
                    fromRight eitherName3
                    )
  where
    fromLeft (Left x) = x 
    fromRight (Right x) = x



topThreeC :: RankDB -> NameDB -> Either Err (Name,Name,Name)
topThreeC rdb ndb =
  case idFromRank rdb 1 of
    Left e -> Left e
    Right id1 -> case nameFromId ndb id1 of
      Left e -> Left e
      Right n1 -> case idFromRank rdb 2 of
        Left e -> Left e
        Right id2 -> case nameFromId ndb id2 of
          Left e -> Left e
          Right n2 -> case idFromRank rdb 3 of
            Left e -> Left e
            Right id3 -> case nameFromId ndb id3 of
              Left e -> Left e
              Right n3 -> Right (n1,n2,n3)



topThreeM :: RankDB -> NameDB -> Either Err (Name,Name,Name)
topThreeM rdb ndb = do

  id <- idFromRank rdb 1
  n1 <- nameFromId ndb id

  id <- idFromRank rdb 2
  n2 <- nameFromId ndb id
    
  id <- idFromRank rdb 3
  n3 <- nameFromId ndb id

  return (n1,n2,n3)




main = do
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]
  print $ topThreeC [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeC [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeC [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]
  print $ topThreeM [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeM [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeM [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]

Maybeモナドの使い道 部分的な失敗を全体的な失敗とする計算(1)

※この記事のEither編はこちら

idと名前のデータベースと、順位とidのデータベースからなる、下記のようなフレームワークを考えてみよう。

2位の名前を取り出すには、idFromRank で 2位のidを取り出し、その id を nameFromId に渡して名前を得るものとする。
idFromRank も nameFromId も要求された順位やidのデータがなければ Nothing に評価されるものとする。

type ID = Int
type Rank = Int
type Name = String
type RankDB = [(Rank,ID)]
type NameDB = [(ID,Name)]

idFromRank :: RankDB -> Rank -> Maybe ID
idFromRank db rk = lookup rk db

nameFromId :: NameDB -> ID -> Maybe Name
nameFromId db id = lookup id db

このフレームワークを使って、上位3位の名前を取得する関数を作成してみよう。
ポイントは、idFromRank も nameFromId も Nothing に評価されることがあるため、この関数もMaybe型に評価されるものとし、1位から3位までのidがすべて存在し、それらの名前がすべて存在する場合のみJustに評価され、それ以外のときはNothingに評価されるようにすることだ。

下記のように呼び出されるようになればよいだろう。

main = do
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]

式を使ったプログラミングで素直に記述する場合、筆者の能力では下記の記述が限界である。
これはどう考えても地獄である。我々が関数プログラミングに求めていたものはこんなものではなかったはずだ。

topThree :: RankDB -> NameDB -> Maybe (Name,Name,Name)
topThree rdb ndb =
  let maybeId1 = idFromRank rdb 1
  in
   if isNothing maybeId1 then Nothing
   else
     let maybeName1 = nameFromId ndb $ fromJust maybeId1
     in
      if isNothing maybeName1 then Nothing
      else
        let maybeId2 = idFromRank rdb 2
        in
         if isNothing maybeId2 then Nothing
         else
           let maybeName2 = nameFromId ndb $ fromJust maybeId2
           in
            if isNothing maybeName2 then Nothing
            else
              let maybeId3 = idFromRank rdb 3
              in
               if isNothing maybeId3 then Nothing
               else
                 let maybeName3 = nameFromId ndb $ fromJust maybeId3
                 in
                  if isNothing maybeName3 then Nothing
                  else Just (
                    fromJust maybeName1,
                    fromJust maybeName2,
                    fromJust maybeName3
                    )

Haskell には case 文があるので、効果的に使えば下記のように改善することができる。
しかし case 文の入れ子も本質的には地獄である。こんなことなら手続き型言語を使えばよいのではないか。

topThreeC :: RankDB -> NameDB -> Maybe (Name,Name,Name)
topThreeC rdb ndb =
  case idFromRank rdb 1 of
    Nothing -> Nothing
    Just id1 -> case nameFromId ndb id1 of
      Nothing -> Nothing
      Just n1 -> case idFromRank rdb 2 of
        Nothing -> Nothing
        Just id2 -> case nameFromId ndb id2 of
          Nothing -> Nothing
          Just n2 -> case idFromRank rdb 3 of
            Nothing -> Nothing
            Just id3 -> case nameFromId ndb id3 of
              Nothing -> Nothing
              Just n3 -> Just (n1,n2,n3)


そこで Maybeモナド登場。
Maybe型のモナドとしての性質を使うと、上記とまったく同じ意味の関数を下記の内容だけで記述することができる。
モナドとしてのMaybe型には、失敗するかもしれない計算どうしを組み合わせるときは、一部でも失敗したらすべてが失敗したことにする
という性質が最初から組み込まれているためである。

topThreeM :: RankDB -> NameDB -> Maybe (Name,Name,Name)
topThreeM rdb ndb = do

  id <- idFromRank rdb 1
  n1 <- nameFromId ndb id

  id <- idFromRank rdb 2
  n2 <- nameFromId ndb id
    
  id <- idFromRank rdb 3
  n3 <- nameFromId ndb id

  return (n1,n2,n3)

全部のせておく。

import Data.Maybe (isNothing,fromJust)

type ID = Int
type Rank = Int
type Name = String
type RankDB = [(Rank,ID)]
type NameDB = [(ID,Name)]

idFromRank :: RankDB -> Rank -> Maybe ID
idFromRank db rk = lookup rk db

nameFromId :: NameDB -> ID -> Maybe Name
nameFromId db id = lookup id db




topThree :: RankDB -> NameDB -> Maybe (Name,Name,Name)
topThree rdb ndb =
  let maybeId1 = idFromRank rdb 1
  in
   if isNothing maybeId1 then Nothing
   else
     let maybeName1 = nameFromId ndb $ fromJust maybeId1
     in
      if isNothing maybeName1 then Nothing
      else
        let maybeId2 = idFromRank rdb 2
        in
         if isNothing maybeId2 then Nothing
         else
           let maybeName2 = nameFromId ndb $ fromJust maybeId2
           in
            if isNothing maybeName2 then Nothing
            else
              let maybeId3 = idFromRank rdb 3
              in
               if isNothing maybeId3 then Nothing
               else
                 let maybeName3 = nameFromId ndb $ fromJust maybeId3
                 in
                  if isNothing maybeName3 then Nothing
                  else Just (
                    fromJust maybeName1,
                    fromJust maybeName2,
                    fromJust maybeName3
                    )
                                   


topThreeC :: RankDB -> NameDB -> Maybe (Name,Name,Name)
topThreeC rdb ndb =
  case idFromRank rdb 1 of
    Nothing -> Nothing
    Just id1 -> case nameFromId ndb id1 of
      Nothing -> Nothing
      Just n1 -> case idFromRank rdb 2 of
        Nothing -> Nothing
        Just id2 -> case nameFromId ndb id2 of
          Nothing -> Nothing
          Just n2 -> case idFromRank rdb 3 of
            Nothing -> Nothing
            Just id3 -> case nameFromId ndb id3 of
              Nothing -> Nothing
              Just n3 -> Just (n1,n2,n3)



topThreeM :: RankDB -> NameDB -> Maybe (Name,Name,Name)
topThreeM rdb ndb = do

  id <- idFromRank rdb 1
  n1 <- nameFromId ndb id

  id <- idFromRank rdb 2
  n2 <- nameFromId ndb id
    
  id <- idFromRank rdb 3
  n3 <- nameFromId ndb id

  return (n1,n2,n3)




main = do
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThree [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]
  print $ topThreeC [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeC [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeC [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]
  print $ topThreeM [(1,101),(2,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeM [(1,101),(4,102),(3,103)] [(101,"1st"),(102,"2nd"),(103,"3rd")]
  print $ topThreeM [(1,101),(2,102),(3,103)] [(101,"1st"),(104,"4th"),(103,"3rd")]



Readerモナドの使い道 仮想グローバル変数

現実的かどうかはさておき、税込み価格の商品と税抜き価格の商品が混在している店を考えてみよう。
会計の都合上、購入金額の合計を計算するときは、一旦すべての単価を税抜きに揃えてから集計し、まとめて税額を計算する必要があるものとする。

合計を計算するコードは下記のようになりそうだ。
このコードを眺めていると、toTaxIncluded と fromTaxIncluded の 引数 taxRate を消したくなってくるだろう。
ほぼ定数のようなものであり、合計の計算とは本質的に関係のない要素であるためだ。

main = do
  print $ total  0.08 [(108,True,2),(200,False,1),(324,True,2),(400,False,1)]


toTaxIncluded :: Float -> Float -> Float
toTaxIncluded taxRate price = price * (1.00 + taxRate)

fromTaxIncluded :: Float -> Float -> Float
fromTaxIncluded taxRate tiPrice = tiPrice / (1.00 + taxRate)

total :: Float -> [(Float,Bool,Int)] -> Float
total taxRate xs =
  let subTotal = foldl' step 0.0 xs
  in toTaxIncluded taxRate subTotal
  where
    step acc (price,taxin,quan) = acc + (unitPrice taxin price) * (fromIntegral quan)
    unitPrice taxin = if taxin
                      then fromTaxIncluded taxRate
                      else id


そこでコードを下記のように改善してみよう。taxRate が引数から消えてすっきりした。
Haskell のコードをスクリプトとして使用している場合はこれで十分だろう。
ただ、一旦コンパイルされてしまうと、toTaxIncludedG と fromTaxIncludedG が使用する税率は固定されてしまう。

main = do
  print $ totalG      [(108,True,2),(200,False,1),(324,True,2),(400,False,1)]


taxRateG :: Float
taxRateG = 0.08

toTaxIncludedG :: Float -> Float
toTaxIncludedG price = price * (1.00 + taxRateG)

fromTaxIncludedG :: Float -> Float
fromTaxIncludedG tiPrice = tiPrice / (1.00 + taxRateG)

totalG :: [(Float,Bool,Int)] -> Float
totalG xs =
  let subTotal = foldl' step 0.0 xs
  in toTaxIncludedG subTotal
  where
    step acc (price,taxin,quan) = acc + (unitPrice taxin price) * (fromIntegral quan)
    unitPrice taxin = if taxin
                      then fromTaxIncludedG
                      else id


そこでReaderモナド登場。Readerモナドを使用すると、手続き型プログラミングでグローバル変数として保持したいような要素を、自然に保持することができる。
runReader関数 の 第2引数で指定した値を、モナド内の任意の関数内で ask 関数を使用して取り出すことができる。

main = do
  print $ totalR 0.08 [(108,True,2),(200,False,1),(324,True,2),(400,False,1)]



toTaxIncludedR :: Float -> Reader Float Float
toTaxIncludedR price = do
  taxRate <- ask
  return $ price * (1.00 + taxRate)

fromTaxIncludedR :: Float -> Reader Float Float
fromTaxIncludedR tiPrice = do
  taxRate <- ask
  return $ tiPrice / (1.00 + taxRate)
  
totalR :: Float -> [(Float,Bool,Int)] -> Float
totalR taxRate xs = (`runReader` taxRate) $ do
  subTotal <- foldM step 0.0 xs
  toTaxIncludedR subTotal
  where
    step :: Float -> (Float,Bool,Int) -> Reader Float Float
    step acc (price,taxin,quan) = do
      up <- unitPrice taxin price
      return $ acc + up * (fromIntegral quan)
  
    unitPrice taxin = if taxin
                      then fromTaxIncludedR
                      else return


全部のせておく。

import Data.List (foldl')
import Control.Monad.Reader (Reader,runReader,ask)
import Control.Monad (foldM)


main = do
  print $ total  0.08 [(108,True,2),(200,False,1),(324,True,2),(400,False,1)]
  print $ totalG      [(108,True,2),(200,False,1),(324,True,2),(400,False,1)]
  print $ totalR 0.08 [(108,True,2),(200,False,1),(324,True,2),(400,False,1)]



toTaxIncluded :: Float -> Float -> Float
toTaxIncluded taxRate price = price * (1.00 + taxRate)

fromTaxIncluded :: Float -> Float -> Float
fromTaxIncluded taxRate tiPrice = tiPrice / (1.00 + taxRate)

total :: Float -> [(Float,Bool,Int)] -> Float
total taxRate xs =
  let subTotal = foldl' step 0.0 xs
  in toTaxIncluded taxRate subTotal
  where
    step acc (price,taxin,quan) = acc + (unitPrice taxin price) * (fromIntegral quan)
    unitPrice taxin = if taxin
                      then fromTaxIncluded taxRate
                      else id



taxRateG :: Float
taxRateG = 0.08

toTaxIncludedG :: Float -> Float
toTaxIncludedG price = price * (1.00 + taxRateG)

fromTaxIncludedG :: Float -> Float
fromTaxIncludedG tiPrice = tiPrice / (1.00 + taxRateG)

totalG :: [(Float,Bool,Int)] -> Float
totalG xs =
  let subTotal = foldl' step 0.0 xs
  in toTaxIncludedG subTotal
  where
    step acc (price,taxin,quan) = acc + (unitPrice taxin price) * (fromIntegral quan)
    unitPrice taxin = if taxin
                      then fromTaxIncludedG
                      else id



toTaxIncludedR :: Float -> Reader Float Float
toTaxIncludedR price = do
  taxRate <- ask
  return $ price * (1.00 + taxRate)

fromTaxIncludedR :: Float -> Reader Float Float
fromTaxIncludedR tiPrice = do
  taxRate <- ask
  return $ tiPrice / (1.00 + taxRate)
  
totalR :: Float -> [(Float,Bool,Int)] -> Float
totalR taxRate xs = (`runReader` taxRate) $ do
  subTotal <- foldM step 0.0 xs
  toTaxIncludedR subTotal
  where
    step :: Float -> (Float,Bool,Int) -> Reader Float Float
    step acc (price,taxin,quan) = do
      up <- unitPrice taxin price
      return $ acc + up * (fromIntegral quan)
  
    unitPrice taxin = if taxin
                      then fromTaxIncludedR
                      else return


Stateモナドの使い道 純粋関数内で状態を扱う

System.Random について調べるコードを考えてみよう。
0から9までのランダムな整数を繰り返し生成するとき、最初に5が現れるのが何回目か知りたいとする。

System.Random には randomRs という関数があり、型と範囲と乱数生成器を指定すると、ランダムな値の無限リストに評価される。
この関数とリストを操作する関数を使えば、下記のようにすっきり記述できる。

場合によってはこれで十分だろう。ただ、処理効率や可読性の面で、より手続き型に近い記述にしたい場面がありそうだ。

count :: R.RandomGen g => g -> Int -> Int
count g n = length $ takeWhile (/=n) $ R.randomRs (0::Int,9) g

--
-- trace version
--
count' :: R.RandomGen g => g -> Int -> Int
count' g n = length $ takeWhile (\x -> trace ("x: " ++ show x) (x/=n)) $ R.randomRs (0::Int,9) g


方法1. Stateモナドを使う

System.Random には randomR という関数があり、型と範囲と乱数生成器を指定すると、ランダムな値と新しい乱数生成器の組に評価される。randomRs の単発版である。

execState は初期状態と Stateモナドを使用する関数を指定すると、終了状態に評価される関数だ。
Stateモナドは、副作用を扱うという点ではIOモナドと似ているが、純粋関数内に閉じ込められる点が異なる。
Stateモナド内で現在の状態を得るにはgetを、状態を更新するにはputを使用する。


countState :: R.RandomGen g => g -> Int -> Int
countState g n = snd $ execState loop (g,0)
  where
    loop :: R.RandomGen g => State (g,Int) ()
    loop = do
      (g,i) <- get
      let (x,g') = R.randomR (0::Int,9) g
      when (x/=n) $ put (g',i+1) >> loop -- n と同じ値が出るまで、状態を書き換えて繰り返す

--
-- trace version
--
countState' :: R.RandomGen g => g -> Int -> Int
countState' g n = snd $ execState loop (g,0)
  where
    loop :: R.RandomGen g => State (g,Int) ()
    loop = do
      (g,i) <- get
      let (x,g') = R.randomR (0::Int,9) g
      when (trace ("x: " ++ show x) (x/=n)) $ put (g',i+1) >> loop

方法2. STモナドを使う

また、IOモナドから入出力に関する機能を取り除き、純粋関数内で評価できるようにした、STモナドも使用できる。
IOモナド内で IORef を使用する感覚で STモナド内で使用できる STRefという型があり、状態を保持することができる。
STRef は 複数作成しても良いので状態の管理が複雑なときは便利かもしれない。


countST :: R.RandomGen g => g -> Int -> Int
countST g n = runST $ do
  ref <- newSTRef (g,0)
  loop ref
  (_,i) <- readSTRef ref -- 繰り返した回数を取り出して報告
  return i
    where
      loop :: R.RandomGen g => STRef s (g,Int) -> ST s ()
      loop ref = do
        (g,i) <- readSTRef ref
        let (x,g') = R.randomR (0::Int,9) g
        when (x/=n) $ writeSTRef ref (g',i+1) >> loop ref -- n と同じ値が出るまで、状態を書き換えて繰り返す

--
-- trace version
--
countST' :: R.RandomGen g => g -> Int -> Int
countST' g n = runST $ do
  ref <- newSTRef (g,0)
  loop ref
  (_,i) <- readSTRef ref
  return i
    where
      loop :: R.RandomGen g => STRef s (g,Int) -> ST s ()
      loop ref = do
        (g,i) <- readSTRef ref
        let (x,g') = R.randomR (0::Int,9) g
        when (trace ("x: " ++ show x) (x/=n)) $ writeSTRef ref (g',i+1) >> loop ref

全部のせておく。

import qualified System.Random as R
import Debug.Trace (trace)

import Control.Monad (when)
import Control.Monad.State(State,execState,get,put)
import Control.Monad.ST(ST,runST)
import Data.STRef(STRef,newSTRef,readSTRef,writeSTRef)


main = do
  g <- R.newStdGen
  print $ count g 5
  print $ countState g 5
  print $ countST g 5
  print $ count' g 5
  print $ countState' g 5
  print $ countST' g 5



count :: R.RandomGen g => g -> Int -> Int
count g n = length $ takeWhile (/=n) $ R.randomRs (0::Int,9) g

--
-- trace version
--
count' :: R.RandomGen g => g -> Int -> Int
count' g n = length $ takeWhile (\x -> trace ("x: " ++ show x) (x/=n)) $ R.randomRs (0::Int,9) g



countState :: R.RandomGen g => g -> Int -> Int
countState g n = snd $ execState loop (g,0)
  where
    loop :: R.RandomGen g => State (g,Int) ()
    loop = do
      (g,i) <- get
      let (x,g') = R.randomR (0::Int,9) g
      when (x/=n) $ put (g',i+1) >> loop

--
-- trace version
--
countState' :: R.RandomGen g => g -> Int -> Int
countState' g n = snd $ execState loop (g,0)
  where
    loop :: R.RandomGen g => State (g,Int) ()
    loop = do
      (g,i) <- get
      let (x,g') = R.randomR (0::Int,9) g
      when (trace ("x: " ++ show x) (x/=n)) $ put (g',i+1) >> loop
      


countST :: R.RandomGen g => g -> Int -> Int
countST g n = runST $ do
  ref <- newSTRef (g,0)
  loop ref
  (_,i) <- readSTRef ref
  return i
    where
      loop :: R.RandomGen g => STRef s (g,Int) -> ST s ()
      loop ref = do
        (g,i) <- readSTRef ref
        let (x,g') = R.randomR (0::Int,9) g
        when (x/=n) $ writeSTRef ref (g',i+1) >> loop ref

--
-- trace version
--
countST' :: R.RandomGen g => g -> Int -> Int
countST' g n = runST $ do
  ref <- newSTRef (g,0)
  loop ref
  (_,i) <- readSTRef ref
  return i
    where
      loop :: R.RandomGen g => STRef s (g,Int) -> ST s ()
      loop ref = do
        (g,i) <- readSTRef ref
        let (x,g') = R.randomR (0::Int,9) g
        when (trace ("x: " ++ show x) (x/=n)) $ writeSTRef ref (g',i+1) >> loop ref

Writerモナドの使い道 計算の経過を得る

1から10まで足し算するコードを考えてみよう。関数型言語では高階関数を使ってすっきり表現できる。
ただ、このコードには欠点がある。最後の結果求めるには十分だが、足し算の経過を見たいときどうしてよいか分からない。

import Data.List(foldl')

main = do
  print $ sum' [1..10]

sum' :: Num a => [a] -> a
sum' xs = foldl' (+) 0 xs

手続き型言語で書かれたコードだったら、一行追加するだけで良いかもしれない。
では関数型言語ではどうするのか?

function sum2 (xs) {
    var r = 0;
    for(var i in xs)
    {
    r += xs[i];
    console.log("r: " + r) // この行を追加すればOK
    }
    return r;
}

方法1. IOモナドを使う

(+) の IOモナド対応版(addIO)を作り、foldl を foldM に変えれば、addIO内でputStrLnが使えるようになる。ただ、これだと純粋な関数ではなくなり、IOを引きずっている箇所でしか利用できない。

main = do
  print =<< sumIO [1..10]

sumIO :: (Num a, Show a) => [a] -> IO a
sumIO xs = foldM addIO 0 xs

addIO :: (Num a, Show a) =>  a -> a -> IO a
addIO p1 p2 = putStrLn ("r: " ++ show r) >> return r
  where
    r = p1 + p2

方法2. trace を使う

Haskell には純粋な関数内での計算をデバッグ出力する関数が用意されている。trace は 第一引数を標準出力に表示し、第二引数と同じものに評価される関数だ。場合によってはこれで十分だろう。ただ、経過の値を他の計算でも利用したいとき、標準出力に表示されてしまったものを利用することはできない。

import Data.List(foldl')
import Debug.Trace

main = do
  print $ sumT [1..10]
  
sumT :: (Num a, Show a) => [a] -> a
sumT xs = foldl' addT 0 xs

addT :: (Num a, Show a) => a -> a -> a
addT p1 p2 = trace ("r: " ++ show r) r
  where
    r = p1 + p2
  

方法3. Writerモナド を使う

そこでWriterモナド登場。WriterモナドはIOモナドと違い純粋関数内で実行でき、コードに下記のように手を加えることで、結果にいたるまでの過程の値を最後にリストとして得ることが出来る。

import Control.Monad.Writer

main = do
  print $ sumW [1..10]

sumW :: (Num a) => [a] -> (a,[a])
sumW xs = runWriter $ foldM addW 0 xs
          
-- 戻り値の型に細工をするとWriterモナド対応の関数になる
addW :: (Num a) => a -> a -> Writer [a] a
-- tell で経過を保存、returnで次の計算に結果を渡す
addW p1 p2 = tell [r] >> return r
  where
    r = p1 + p2

全部のせておく。

import Data.List(foldl')
import Debug.Trace
import Control.Monad.Writer

main = do
  print $ sum' [1..10]
  print $ sumW [1..10]
  print $ sumT [1..10]
  print =<< sumIO [1..10]


sum' :: Num a => [a] -> a
sum' xs = foldl' (+) 0 xs



sumIO :: (Num a, Show a) => [a] -> IO a
sumIO xs = foldM addIO 0 xs

addIO :: (Num a, Show a) =>  a -> a -> IO a
addIO p1 p2 = putStrLn ("r: " ++ show r) >> return r
  where
    r = p1 + p2



sumT :: (Num a, Show a) => [a] -> a
sumT xs = foldl' addT 0 xs

addT :: (Num a, Show a) => a -> a -> a
addT p1 p2 = trace ("r: " ++ show r) r
  where
    r = p1 + p2
  


sumW :: (Num a) => [a] -> (a,[a])
sumW xs = runWriter $ foldM addW 0 xs
          
addW :: (Num a) => a -> a -> Writer [a] a
addW p1 p2 = tell [r] >> return r
  where
    r = p1 + p2

window.onload = function() {
    console.log(sum1([1,2,3,4,5,6,7,8,9,10]));
    console.log(sum2([1,2,3,4,5,6,7,8,9,10]));
}

function sum1 (xs) {
    var r = 0;
    for(var i in xs)
    {
    r += xs[i];
    }
    return r;
}

function sum2 (xs) {
    var r = 0;
    for(var i in xs)
    {
    r += xs[i];
    console.log("r: " + r)
    }
    return r;
}

継続モナドの使い道 早期リターン

引数をチェックして、問題があれば Left に包んだエラーメッセージに、問題がなければ Right に包んだ計算結果に評価される関数を考えてみよう。
純粋な関数でもロジックを表現することは可能だが、if文のネストが深くなればなるほど地獄である。手続き型言語であれば早期リターンで書きたいところだが、関数型言語ではどうするのか。

checkName :: String -> String -> Either String String
checkName fstname famname =
  if ( length fstname == 0 )
  then Left "error: fstname is empty"
  else
    if not (isValidFirstName fstname)
    then Left "error: fstname is invalid"
    else
      if ( length famname == 0 )
      then Left "error: famname is empty"
      else
        if not (isValidFamilyName famname)
        then Left "error: famname is invalid"
        else Right $ fstname ++ " " ++ famname
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)

方法1. Eitherモナドを使う

※某所で指摘を受けたので追記。
Either モナド自体の性質を利用すれば、無尽蔵にネストが深くなっていく状況は避けることができる。場合によってはこれで十分だろう。ただ、より早期リターン風に表現したいときどうしたらよいか?

checkNameEM :: String -> String -> Either String String
checkNameEM fstname famname = do
  -- fstname 単体でチェック
  fstname' <- if ( length fstname == 0 )
              then Left "error: fstname is empty"
              else
                if not (isValidFirstName fstname)
                then Left "error: fstname is invalid"
                else Right fstname

  -- famname 単体でチェック
  famname' <- if ( length famname == 0 )
              then Left "error: famname is empty"
              else
                if not (isValidFamilyName famname)
                then Left "error: famname is invalid"
                else Right famname

  -- fstname' famname' の両方が Right の時だけ関数が評価される
  return $ fstname' ++ famname'
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)

ついでにApplicativeスタイルでの記述も載せておく。

checkNameEA :: String -> String -> Either String String
checkNameEA fstname famname = do
  -- fstname 単体でチェックした結果をEither(Left or Right)で包む
  let fstname' = if ( length fstname == 0 )
                 then Left "error: fstname is empty"
                 else
                   if not (isValidFirstName fstname)
                   then Left "error: fstname is invalid"
                   else Right fstname

  -- famname 単体でチェックした結果をEither(Left or Right)で包む
  let famname' = if ( length famname == 0 )
                 then Left "error: famname is empty"
                 else
                   if not (isValidFamilyName famname)
                   then Left "error: famname is invalid"
                   else Right famname

  -- Applicativeスタイル
  -- fstname' famname' の両方が Right の時だけ関数が評価される
  (\fst fam -> fst ++ " " ++ fam) <$> fstname' <*> famname'
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)

方法2. 継続モナドを使う

そこで継続モナド登場。純粋関数内で、早期リターンのような記述が可能となる。

checkNameC :: String -> String -> Either String String
checkNameC fstname famname = (`runCont` id) $ callCC $ \exit -> do
  when ( length fstname == 0 )
    $ exit $ Left "error: fstname is empty"

  when ( not (isValidFirstName fstname))
    $ exit $ Left "error: fstname is invalid"

  when ( length famname == 0 )
    $ exit $ Left "error: famname is empty"

  when ( not (isValidFamilyName famname))
    $ exit $ Left "error: famname is invalid"

  return $ Right $ fstname ++ " " ++ famname
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)

全部のせておく。

import Data.Char(isLower,isUpper)
import Control.Monad.Cont


checkName :: String -> String -> Either String String
checkName fstname famname =
  if ( length fstname == 0 )
  then Left "error: fstname is empty"
  else
    if not (isValidFirstName fstname)
    then Left "error: fstname is invalid"
    else
      if ( length famname == 0 )
      then Left "error: famname is empty"
      else
        if not (isValidFamilyName famname)
        then Left "error: famname is invalid"
        else Right $ fstname ++ " " ++ famname
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)



checkNameEM :: String -> String -> Either String String
checkNameEM fstname famname = do
  -- fstname 単体でチェック
  fstname' <- if ( length fstname == 0 )
              then Left "error: fstname is empty"
              else
                if not (isValidFirstName fstname)
                then Left "error: fstname is invalid"
                else Right fstname

  -- famname 単体でチェック
  famname' <- if ( length famname == 0 )
              then Left "error: famname is empty"
              else
                if not (isValidFamilyName famname)
                then Left "error: famname is invalid"
                else Right famname

  -- fstname' famname' の両方が Right の時だけ関数が評価される
  return $ fstname' ++ famname'
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)



checkNameEA :: String -> String -> Either String String
checkNameEA fstname famname = do
  -- fstname 単体でチェックした結果をEither(Left or Right)で包む
  let fstname' = if ( length fstname == 0 )
                 then Left "error: fstname is empty"
                 else
                   if not (isValidFirstName fstname)
                   then Left "error: fstname is invalid"
                   else Right fstname

  -- famname 単体でチェックした結果をEither(Left or Right)で包む
  let famname' = if ( length famname == 0 )
                 then Left "error: famname is empty"
                 else
                   if not (isValidFamilyName famname)
                   then Left "error: famname is invalid"
                   else Right famname

  -- Applicativeスタイル
  -- fstname' famname' の両方が Right の時だけ関数が評価される
  (\fst fam -> fst ++ " " ++ fam) <$> fstname' <*> famname'
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)



checkNameC :: String -> String -> Either String String
checkNameC fstname famname = (`runCont` id) $ callCC $ \exit -> do
  when ( length fstname == 0 )
    $ exit $ Left "error: fstname is empty"

  when ( not (isValidFirstName fstname))
    $ exit $ Left "error: fstname is invalid"

  when ( length famname == 0 )
    $ exit $ Left "error: famname is empty"

  when ( not (isValidFamilyName famname))
    $ exit $ Left "error: famname is invalid"

  return $ Right $ fstname ++ " " ++ famname
  where
    isValidFirstName ca = (all isLower ca)
                          && ( 4 <= length ca && length ca <= 10)
    isValidFamilyName ca = (all isUpper ca)
                           && ( 2 <= length ca && length ca <= 8)